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We study anomalous scaling properties of growing interfaces in random media. We contrast analytical
results of a variety of growth models involving subdiffusion, thermal noise, and quenched disorder with
simulations. In these models the interface may be not self-affine and the standard scaling of Family-Vicsek
fails. In our two-dimensional models, self-affine surfaces only appear when the roughness exponent isx51/2
or x51. A different scaling picture, which leads to more suitable ways of determining the scaling exponents,
is proposed for kinetic roughening when lack of self-affinity exists.@S1063-651X~96!50209-6#

PACS number~s!: 05.40.1j, 05.70.Ln, 68.35.Fx

Interface roughening observed in many growth phenom-
ena@1,2# can be explained as produced by the interplay be-
tween a surface tension, which tends to smooth the interfa-
cial curvature, and some kind of noise coming from either
thermal fluctuations or spatial inhomogeneities~i.e.,
quenched disorder!. In the simplest model exhibiting kinetic
roughening, the Edwards-Wilkinson~EW! model @3#, both
effects are involved by means of a diffusion term and an
additive thermal noise. In order to introduce some symme-
tries existing in many real systems, a nonlinear term must be
added to the EW model and this gives rise to the Kardar-
Parisi-Zhang~KPZ! equation@4#. The two-dimensional KPZ
model successfully describes a remarkable diversity of
growth processes and is an excellent example of universality
@1,2#. Simulations and analytical calculations indicate that
the two-dimensional KPZ model leads to self-affine inter-
faces with simple scaling laws. One of the most important
quantities used to characterize the scaling of the interface is
the global width,

s~L,t !5$@^h2~x,t !&2^h~x,t !&2#1/2%, ~1!

whereL is the system size,̂•••& denotes a spatial average
over the whole system and$•••% over realizations. For the
early times regime, the interface width is expected to be of
the forms(L,t);tb, whereb is called the time exponent.
At a characteristic saturation timets(L);Lz, wherez is the
dynamic exponent, the horizontal correlation length reaches
the system size and the width saturates,s(L,t.ts);Lx,
with a roughness exponentx. This is the so-called Family-
Vicsek scalingansatz@1,2#.

Thus, the roughness exponent is calculated from the scal-
ing of the width in saturation. To measurex in an experiment
or simulation, one has to consider systems with different
sizes and wait for saturation at timests(L);Lz. This way of
determiningx is not very convenient from a computational
point of view due to the large system sizes in which simula-
tions must be done. The situation in experiments is not bet-
ter, because one should perform measurements in samples
with different sizes. For that, in practice an alternative
method is usually used. The width is evaluated over a win-
dow of sizel!L and one waits for saturation a shorter time
ts( l )!ts(L). This local width is believed to scale as the glo-

bal width,s( l ,t);tb for short times, and the roughness ex-
ponent is obtained from the scaling ofs( l ,t) at times
t@ l z:

s~ l ,t@ l z!; l x loc. ~2!

Equivalently, the height difference correlation function,
G( l ,t)5$^@h( l1x,t)2h(x,t)#2&%, can be used to determine
the scaling exponents becauseG( l ,t);s2( l ,t). It is a gen-
eral belief@1,2# that the roughness exponentx loc obtained in
this way is equal to the exponentx that one gets from the
global width. In fact, this is correct when the interface is
self-affine.

In general, this picture has been extrapolated to other
kinds of growth phenomena involving higher dimensions
~KPZ in an arbitrary dimension! @1,2#, subdiffusive behavior
in epitaxial growth phenomena@5,2# and quenched noise in
porous media@2,6–10#. In contrast to the two-dimensional
KPZ case, experiments and simulations now show a great
discrepancy. There are numerical evidences about ananoma-
lous scaling behavior in growth processes in which the
roughness exponent is larger than 1~x.1!. In numerical
studies of models related to the molecular-beam epitaxy
~MBE! growth, it has been found@11# that global roughness
~measured by the interface width! gives different scaling ex-
ponents than local roughness~measured by either a height
difference correlation function or the local width in a win-
dow of size l ). Similar results have been numerically ob-
tained in the case of the EW equation with quenched noise
@8–10#. This equation has attracted much attention in recent
years@2,6–10# because it is the simplest way of describing
driven interfaces in quenched disordered media. Surpris-
ingly, it seems that local and global dynamic scaling behav-
iors are distinctly different for some growth processes. This
anomalous scaling behavior is not predicted by the conven-
tional dynamic scaling hypothesis of Family-Vicsek and it is
not well understood.

The most recent interpretation@8–10,12,13# of this
anomalous scaling is that the conventional dynamic scaling
fails in the case of a roughness exponent larger than 1,x.1.
However, very recently, Das Sarmaet al. @14# have studied
MBE growth models with a global roughnessx,1 in which
an anomalous scaling behavior appeared as well. So, it seems
that a roughnessx.1 is not the only reason for anomalous
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scaling behavior. Moreover, the situation is further compli-
cated due to the fact that for most of these growth models
there is not an analytical value of the roughness exponent.

Our aim in this paper is to show that anomalous scaling
occurs not only wheneverx.1; also in growth processes in
which x,1 different roughness exponents may appear at
small and large length scales. As a consequence the interface
is not self-affine and a new scaling picture emerges. Our
conclusions are based on analytical solutions~and compari-
son with simulation! of growth models with subdiffusive be-
havior and-or quenched disorder.

Models with uniform diffusion

The inequalityxÞx loc has been numerically found in
models without analytical solutions. In the following we are
going to consider models with analytical solutions that will
allow us to understand the existence of a local exponent
x loc . Let us start by studying models with diffusive or sub-
diffusive behavior and thermal noise governed by the equa-
tion

]h~x,t !

]t
5~21!m11

]2mh~x,t !

]x2m
1h~x,t !, ~3!

whereh(x,t) is a Gaussian noise with correlation

^h~x,t !h~x8,t8!&5Da~x2x8!d~ t2t8!.

The correlatorDa(x) is a normalized function decaying rap-
idly to zero over a finite distancea. The casem51 corre-
sponds to the EW model@3#, for m52 we have the linear
model @5,14,12#, used in MBE growth, and in general by
increasingm more subdiffusive processes are obtained.

Since these models are linear the scaling exponents can be
easily calculated:x5(2m21)/2, b5(2m21)/4m, and
z52m. We have numerically solved Eq.~3! for m51 and

m52. In all cases there exists good agreement between the
analytically calculatedx and simulation results when Eq.~1!
was used. Form51 also the local method, Eq.~2!, gives the
correct exponentx loc5x51/2. However, form52 there is a
remarkable discrepancy between the local roughness expo-
nent obtained in our simulation, 0.8360.05, and the theoreti-
cal valuex53/2. This discrepancy indicates that the interface
is not self-affine and different roughness exponents exist at
large and small length scales. The analytical treatment of Eq.
~3! allows us to understand the existence of this anomalous
scaling. Consider the height difference correlation function
G( l ,t) under thel /L!1 condition:

G~ l ,t !5t2bE
2`

`

du
~12e22u2m!

u2m
~12e2 iul /t1/z!Da/t1/z~u!,

~4!

Da(k) being the Fourier transform of the correlatorDa( l ).
For early times,l /t1/z@1, we haveG( l ,t);c(t)t2b, c(t)
slowly varying and in the long time limit,l /t1/z!1,
G( l ,t);t2b( l /t1/z)b( l /a) @where b( l /a);const#, when
m51 andG( l ,t);t2b( l /t1/z)2, whenm>2. For small length
scales,l!t1/z, we have the general scaling

G~ l ,t !;t2b~ l /t1/z!n;t2b
* l 2x loc, ~5!

where b*5b2n/2z, x loc5n/2, and the integern51 or
n52 depending on the model. Note that this scaling would
occur in any other growth model whenever
G( l ,t);t2bg( l /t1/z,a/t1/z), where the scaling function
g(x,y) is analytical inx50 andg(0,0)50. For true self-
affine interfaces the exponentb*50 and the Family-Vicsek
scaling is recovered. This only occurs forbz5n/2, in such a
way that the interface is self-affine wheneverx5n/2 and
x5x loc is also verified. Thus, Eq.~5! gives the self-affinity
condition in the sense that ifb*.0, the interface is not
self-affine.

From Eq.~5! for m51 ~case withn51), we obtain that
G( l ,t) becomes constant and independent of time,
G( l ,t@ l z); l , as corresponds to the usual Family-Vicsek
scaling picture. However, form>2 (n52 in this case! for
small length scales,l!t1/z, we haveG( l ,t); l 2t123/2m, and
there is not saturation ofG( l ,t@ l z) at long times. Contrary
to what is expected in the usual scaling, the height difference
correlation ~or equivalently the square local width! scales
with time as t2b

* and a new temporal exponent appears,
b*5b21/z5(2m23)/4m describing the long time behav-
ior of the local width. In particular, the linear model of MBE
@5,14,12# @Eq. ~3! for m52] exhibits an anomalous scaling
in the sense that in the earliest time regime the local width
@measured by the quantityG( l ,t)] scales ast2b;t3/4 and
does not saturate butG( l ,t); l 2t2b

* for l!t1/z!L ~where
b*5b21/z51/8). Our numerical results~see Fig. 1! for
Eq. ~3! with m52 are in excellent agreement with this analy-
sis. The saturation regime in this case is dominated by the
saturation of the largest scalesl;L. At time t;Lz saturation
occurs in the whole system andG( l ,t→`); l 2L2b

*
z

; l 2L2x22 for l!L!t1/z. When saturation occurs,
G( l ,t→`) exhibits two different spatial scaling behaviors.
For l!L, G( l ,t→`) scales with the window size asl 2

~which corresponds to a local roughness exponentx loc51)

FIG. 1. Square local width vs time for the linear MBE model,
m52, calculated over a window sizel55 ~squares!, l510 ~tri-
angles!, and l5150 ~crosses!. The continuous line corresponds to
the fit of the square global width,s2(L,t);t2b. The dashed line is
the adjusted curve of the data forl55 and its slope 0.2660.02
corresponds to 2b* . A system size ofL51000 was used and an
average over 15 realizations of disorder was performed.
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and for large scales,l;L, G(L,t→`);s2(L,t→`);L2x.
This crossover behavior leads to aneffectiveexponentxe f f in
between large and short length scales that is the scaling be-
havior measured in simulations~in ours we foundxe f f
50.8360.05). Since saturation ofs( l ,t) occurs in times,
Lz, very much longer than its normal value,l z, for a standard
scaling behavior, the value in saturation ofs( l ,t→`) is
greater and the interpolation to the largest scales occurs with
decreasing slopes. As a consequence any determination of
the local roughness exponent from Eq.~2! gives underesti-
mated values ofx loc .

Models with random diffusion

As we have discussed above, models governed by Eq.~3!
give anomalous scaling form>2. In this case the roughness
is always x5(2m21)/2.1 and x loc;1 on short length
scales. The question that we would like to discuss now is if
the lack of self-affinity is due to a roughness exponent
x.1 or, on the contrary, anomalous scaling can exist even
in growth models withx,1. The most extended opinion
@8–10,12,13# is that interfaces withx.1 are not properly
fractal objects and self-affinity is not a sure feature. But self-
affinity for interfaces in whichx,1 is a simple hypothesis
that, as we will show, in our models is only valid for
x51/2 or 1. This can be readily verified in a kind of growth
model in whichx takes a continuous range of values con-
trolled by the intensity of disorder in the diffusion coeffi-
cient. This model can be used to describe a fluid interface
advancing through stratified porous materials@15# with long
range correlations in the growth direction. The growth model
that we study here is given by

]h~x,t !

]t
5

]

]x
D~x!

]

]x
h~x,t !1h~x,t !. ~6!

D(x).0 is the columnar diffusivity coefficient that controls
the interconnectivity between neighbor channels. This equa-
tion can be viewed like Eq.~3! form51 but with a quenched
random diffusion term. A similar model was recently studied
in Ref. @15#.

It is known @15# that Eq.~6! can be considered as a model
of diffusing particles with time-dependent sources and sinks
in such a way that it is possible, using the well-known theory
of transport through random media, to take the usual stochas-
tic description forD(x). So,D(x) is taken to be an uncor-
related random field and distributed according to a probabil-
ity density P(D)5NaD

2a f c(D/Dmax), where Na is a
normalization constant andf c a cutoff function. The param-
eter a characterizes the intensity of disorder. Disorder is
calledweak for a50. Strongdisorder occurs for 0,a,1
because of the divergence ofP(D) at origin. The model so
formulated is easy to simulate numerically and allows ana-
lytical treatment. As has been shown@15#, the inhomoge-
neous problem~6! is statistically equivalent to a homoge-
neous one with a time-dependent diffusion coefficient given
by the so-called effective medium approximation condition
@15#. With the above-definedP(D) the equivalent diffusion
length scales asl D(t);t (12a)/(22a) and consequently the dy-
namical exponentz will be given byz5(22a)/(12a). The
exponentsb and x can be easily calculated, obtaining

b51/2(22a) and x51/2(12a). Note that, as we have
mentioned above, a continuous range of roughness expo-
nents ~from x51/2 to x5`! are obtained by varying the
intensity of disordera.

The height difference correlation function can be calcu-
lated@15# in the asymptotic time regime from Eq.~6! and is
given by

G~ l ,t !;t2bE
2`

`

duE
0

1

dvE dsE
0

s

ds8

3
esv

~s2s82D~s2s8 !u2!~s82D~s8 !u2!

3~12e2 iul /t1/z!Da/t1/z~u!, ~7!

whereD(s);sa/(22a) is the Laplace transform of the time-
dependent diffusion coefficient. Since Eq.~6! has the same
analytical behavior as Eq.~3! for m51 @with an equivalent
time-dependent diffusion coefficientD(t)] it is easy to see
that the scaling ofG( l ,t), Eq. ~7!, for small scalesl!t1/z is
also given by Eq.~5! with n51 ~with the corresponding
a-dependent exponents!.

For small length scales,l!t1/z!L, from Eq.~5! we have
that the square local widthG( l ,t) crosses over to a different
temporal regimeG( l ,t@ l z);t2b

* l where the time exponent
is b*5b21/2z5a/2(22a). Thus, the interface would be

FIG. 2. Square local width vs time for the random diffusion
model, Eq.~6!, averaged over a length scalel55 ~squares!, l510
~triangles!, andl5150 ~crosses! for different degrees of disorder. A
system sizeL51000 and 15 realizations of disorder were used. As
in Fig. 1, the continuous line slopes correspond to the values of
2b obtained in simulation. The dashed line is the adjusted curve of
the data forl55. A comparison with our scaling theory is given in
Table I.
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self-affine only in the case of weak disordera50 ~i.e., the
EW equation!. For 0,a,1, the interface is not a self-affine
object and an anomalous scaling occurs. In Fig. 2 our nu-
merical results for the local width versus time are presented
for three degrees of disorder. We can see that the exponent
b* predicted by our scaling is in very good agreement with
simulation for alla ~see Table I!.

In true saturation, at very long times,l!L!t1/z, the scal-
ing behavior ofG( l ,t) can be obtained from Eq.~5! for
n51 and we haveG( l ,t→`); lL 2x21. So, in the case of
strong disorder a local roughnessx loc51/2 is obtained. Cer-
tainly, as we can see in Table I, the crossover to the global
roughnessx51/@2~22a!#.1/2 for larger scales yields lower
numerical values of the local roughness exponent. In all
cases, including those withx,1, the interface is not self-
affine as we claimed above. From our models it is clear that
the standard exponentsx, b, andz cannot characterize com-
pletely the scaling behavior of a growing interface. For in-
stance, note that the linear MBE model, Eq.~3! for m52,
leads to the same critical exponentsb, x, andz, as the model
with random diffusion, Eq.~6!, in the case of a disorder
parametera52/3; however, both models have a very differ-
ent local roughness exponent in such a way that they belong
to distinct universality classes.

In conclusion, we have studied the problem of anomalous
kinetic roughening by means of a variety of growth models
that allowed us an analytical treatment. Analytical results
have been compared with simulations focusing our interest
on the scaling of the local width at small length scales,
l!L. We have shown rigorously that anomalous scaling may

occur even in growth processes in whichx,1. In our mod-
els the failure of the Family-Vicsek scaling, except for
growth with x5n/2 ~wheren51, 2), indicates that the in-
terface is not self-affine. In addition, we have seen that a new
time exponentb*5b2n/2z ~where n51,2 depending on
the model! has to be introduced in order to get a complete
description of the scaling behavior of the interface. More-
over, the roughness exponentxe f f , commonly obtained in a
number of simulations~and experiments!, is an effective ex-
ponent affected by a crossover from the local scaling expo-
nentx loc to the global roughness exponentx. This effective
roughness exponent does not give any information about the
value of the scaling exponentsx, b, andz; however,xe f f is
important from a physical point of view to obtain the effec-
tive roughness measured in experiments and to distinguish
the corresponding universality class.

Although the new scaling picture, proposed in Eq.~5!, has
been obtained from the study of particular models, we be-
lieve that it can be applied to more general growth processes.
The scaling~5! is based on the property of the scaling func-
tion, g, of being analytical at small length scales and this is
expected to be verified for a broad class of growth problems.
The existence of kinetic roughening satisfying Eq.~5! but
with values ofnÞ1,2 must be investigated further since, in
this case,x loc would be a new and interesting scaling expo-
nent. Investigation of this point is in progress.
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TABLE I. Scaling exponents for the model with random diffusion, Eq.~6!, for several degrees of
disorder. Theoretical values ofb, x, andb* are given in the text. The effective roughness exponent is always
lower than the local roughnessx loc51/2. Note thatx loc remains roughly constant despite the great difference
existing inx

a
b

~exact!
b

~simulation!
x

~exact!
xe f f

~simulation!
b*

~theory!
b*

~simulation!

2/3 3/8 0.3860.05 3/2 0.3560.05 1/4 0.2760.03
1/2 1/3 0.3460.01 1 0.3960.04 1/6 0.1860.03
1/3 3/10 0.3160.02 3/4 0.4560.05 1/10 0.1260.04
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