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Lack of self-affinity and anomalous roughening in growth processes
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We study anomalous scaling properties of growing interfaces in random media. We contrast analytical
results of a variety of growth models involving subdiffusion, thermal noise, and quenched disorder with
simulations. In these models the interface may be not self-affine and the standard scaling of Family-Vicsek
fails. In our two-dimensional models, self-affine surfaces only appear when the roughness expgretiRis
or x=1. A different scaling picture, which leads to more suitable ways of determining the scaling exponents,
is proposed for kinetic roughening when lack of self-affinity exig81063-651X96)50209-§

PACS numbsg(s): 05.40:+], 05.70.Ln, 68.35.Fx

Interface roughening observed in many growth phenombal width, o(1,t)~t? for short times, and the roughness ex-
ena[1,2] can be explained as produced by the interplay beponent is obtained from the scaling ef(l,t) at times
tween a surface tension, which tends to smooth the interfa=|*
cial curvature, and some kind of noise coming from either
thermal fluctuations or spatial inhomogeneities.e., a(l,t>1%) ~|Xec, 2
guenched disordgrin the simplest model exhibiting kinetic
roughening, the Edwards-WilkinsofeW) model[3], both  Equivalently, the height difference correlation function,
effects are involved by means of a diffusion term and anG(l,t)={([h(l +x,t) —h(x,t)]?)}, can be used to determine
additive thermal noise. In order to introduce some symmethe scaling exponents becausél,t)~a?(l,t). It is a gen-
tries existing in many real systems, a nonlinear term must beral belief[1,2] that the roughness exponept, obtained in
added to the EW model and this gives rise to the Kardarthijs way is equal to the exponegtthat one gets from the
Parisi-ZhangKPZ) equation[4]. The two-dimensional KPZ  global width. In fact, this is correct when the interface is
model successfully describes a remarkable diversity otelf-affine.
growth processes and is an excellent example of universality |n general, this picture has been extrapolated to other
[1,2]. Simulations and analytical calculations indicate thatkinds of growth phenomena involving higher dimensions
the two-dimensional KPZ model leads to self-affine inter-(KPZz in an arbitrary dimensior{1,2], subdiffusive behavior
faces with simple scaling laws. One of the most importantn epitaxial growth phenomen®,2] and quenched noise in
quantities used to characterize the scaling of the interface isorous medig2,6—10. In contrast to the two-dimensional

the global width, KPZ case, experiments and simulations now show a great
discrepancy. There are numerical evidences aboahama-
cr(L,t)={[<h2(x,t))—<h(x,t))2]1/2}, 1) lous scaling behavior in growth processes in which the

roughness exponent is larger than(}>1). In numerical

studies of models related to the molecular-beam epitaxy
wherelL is the system siz€|---) denotes a spatial average (MBE) growth, it has been foundl1] that global roughness
over the whole system and--} over realizations. For the (measured by the interface widtgives different scaling ex-
early times regime, the interface width is expected to be oponents than local roughnegmeasured by either a height
the form o(L,t)~t#, whereg is called the time exponent. difference correlation function or the local width in a win-
At a characteristic saturation timeg(L)~L? wherez is the  dow of sizel). Similar results have been numerically ob-
dynamic exponent, the horizontal correlation length reachetained in the case of the EW equation with quenched noise
the system size and the width saturategl ,t>t.)~LX, [8—10]. This equation has attracted much attention in recent
with a roughness exponert This is the so-called Family- years[2,6—10 because it is the simplest way of describing
Vicsek scalingansatz[1,2]. driven interfaces in quenched disordered media. Surpris-

Thus, the roughness exponent is calculated from the scalngly, it seems that local and global dynamic scaling behav-

ing of the width in saturation. To measuyen an experiment iors are distinctly different for some growth processes. This
or simulation, one has to consider systems with differenanomalous scaling behavior is not predicted by the conven-
sizes and wait for saturation at timggL)~LZ% This way of  tional dynamic scaling hypothesis of Family-Vicsek and it is
determiningy is not very convenient from a computational not well understood.
point of view due to the large system sizes in which simula- The most recent interpretatiofi8—10,12,13 of this
tions must be done. The situation in experiments is not betanomalous scaling is that the conventional dynamic scaling
ter, because one should perform measurements in sampl&sls in the case of a roughness exponent larger thar~1L,.
with different sizes. For that, in practice an alternativeHowever, very recently, Das Sarnet al. [14] have studied
method is usually used. The width is evaluated over a winMBE growth models with a global roughnegs<1 in which
dow of sizel <L and one waits for saturation a shorter time an anomalous scaling behavior appeared as well. So, it seems
ts(l)<tg(L). This local width is believed to scale as the glo- that a roughnesg>1 is not the only reason for anomalous
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m=2. In all cases there exists good agreement between the
analytically calculated and simulation results when E€.)

was used. Fom=1 also the local method, EQ), gives the
correct exponeng,..= x= 1/2. However, fom=2 there is a
remarkable discrepancy between the local roughness expo-
nent obtained in our simulation, 0.88.05, and the theoreti-

cal valuey=3/2. This discrepancy indicates that the interface
is not self-affine and different roughness exponents exist at
large and small length scales. The analytical treatment of Eq.
(3) allows us to understand the existence of this anomalous
scaling. Consider the height difference correlation function
G(l,t) under thel/L<1 condition:

(1-e 2"

G(|,t)=t25J_ du—uzm—(l—e—i“'/tl’z)Aa,tllz(u),
(4)
FIG. 1. Square local width vs time for the linear MBE model, Aa(K) being the F%Jrier transform of the Corre|23m5(|)-
m=2, calculated over a window siZe=5 (squares |=10 (tri-  For early times,I/t**>1, we haveG(l,t)~c(t)t*#, c(t)

angles, and| =150 (crosses The continuous line corresponds to Slowly varying and in the long time limit,l/t¥?<1,
the fit of the square global widtlr?(L,t) ~t24. The dashed lineis  G(l,t)~t?A(1/t¥%)b(l/a) [where b(l/a)~consi, when
the adjusted curve of the data fb=5 and its slope 0.260.02 m=1 andG(l,t)~t%4(1/t*?)?, whenm=2. For small length
corresponds to 2, . A system size oL =1000 was used and an scales) <t1’2, we have the general scaling
average over 15 realizations of disorder was performed.
G(1,t)~t2A(1/112)"~ 2P| 2Xioc, (5)

scaling behavior. Moreover, the situation is further compli-
cated due to the fact that for most of these growth modelgvhere 8, =B—n/2z, x,,c=n/2, and the integen=1 or
there is not an analytical value of the roughness exponent.n=2 depending on the model. Note that this scaling would

Our aim in this paper is to show that anomalous scalingpccur in any other growth model whenever
occurs not only whenevey>1; also in growth processes in G(l,t)~t?#g(1/t*?,a/t'?), where the scaling function
which y<1 different roughness exponents may appear ag(x,y) is analytical inx=0 andg(0,0)=0. For true self-
small and large length scales. As a consequence the interfaeffine interfaces the exponegt, =0 and the Family-Vicsek
is not self-affine and a new scaling picture emerges. Ouscaling is recovered. This only occurs 8z=n/2, in such a
conclusions are based on analytical soluticmsd compari- way that the interface is self-affine whenevern/2 and
son with simulatioh of growth models with subdiffusive be- x= xoc is also verified. Thus, E(5) gives the self-affinity

havior and-or quenched disorder. condition in the sense that |8, >0, the interface is not
self-affine.
Models with uniform diffusion From Eq.(5) for m=1 (case withn=1), we obtain that

] ) ) ~ G(I,t) becomes constant and independent of time,

The inequality x # x\oc has been numerically found in G| t>1%)~|, as corresponds to the usual Family-Vicsek
models without analytical solutions. In the following we are scaling picture. However, fom=2 (n=2 in this casg for
going to consider models with analytical solutions that will g4 length scalesl,<t1’2,’ we haveG(l,t)~12t1~32 and

allow us to understand the existence of a local exponenfere is not saturation @B(l,t>1?) at long times. Contrary

Xioc - L€t us start by studying models with diffusive or sub- 1 what is expected in the usual scaling, the height difference
diffusive behavior and thermal noise governed by the equéggrrelation (or equivalently the square local widtiscales

tion with time ast?’+ and a new temporal exponent appears,
ah(x,t) P™h(x,1) By« =pB—1/z=(2m—3)/4m describing the long time behav-
0712, =(— 1)m+1w+ 7(x,1), €) ior of the local width. In particular, the linear model of MBE

[5,14,13 [Eq. (3) for m=2] exhibits an anomalous scaling
in the sense that in the earliest time regime the local width
[measured by the quantit(l,t)] scales as?~t%* and
(X0 (X" 1)) = Ag(x—x") S(t—t"). does not saturate bui(l,t)~1%t%4« for |<t?<L (where
B, =pB—1/z=1/8). Our numerical resultésee Fig. 1 for
The correlator ,(x) is a normalized function decaying rap- Eq.(3) with m=2 are in excellent agreement with this analy-
idly to zero over a finite distance. The casem=1 corre- sis. The saturation regime in this case is dominated by the
sponds to the EW mod¢B], for m=2 we have the linear saturation of the largest scalesL. At time t~L? saturation
model [5,14,19, used in MBE growth, and in general by occurs in the whole system an@(l,t—x)~12L2Px?
increasingm more subdiffusive processes are obtained.  ~1?L2¥"2 for |<L<tY. When saturation occurs,
Since these models are linear the scaling exponents can I&1,t—o0) exhibits two different spatial scaling behaviors.
easily calculated: y=(2m—1)/2, B=(2m—1)/4m, and For I<L, G(l,t—=) scales with the window size ag
z=2m. We have numerically solved Eq3) for m=1 and (which corresponds to a local roughness expongs=1)

where 7(Xx,t) is a Gaussian noise with correlation
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and for large scale$~L, G(L,t—®)~a?(L,t—ow)~L2X

This crossover behavior leads to effiectiveexponentyq¢s in
between large and short length scales that is the scaling be-
havior measured in simulationén ours we found ycs
=0.83£0.05). Since saturation af(l,t) occurs in times,

LZ, very much longer than its normal valué, for a standard
scaling behavior, the value in saturation @fl,t—o) is
greater and the interpolation to the largest scales occurs with
decreasing slopes. As a consequence any determination of
the local roughness exponent from E8) gives underesti-
mated values of |, -

logy 0° (Lt)

Models with random diffusion

log,, 0° (1,t)

As we have discussed above, models governed by3q.
give anomalous scaling fan=2. In this case the roughness
is always y=(2m—1)/2>1 and y,,c~1 on short length
scales. The question that we would like to discuss now is if
the lack of self-affinity is due to a roughness exponent
x>1 or, on the contrary, anomalous scaling can exist even
in growth models withy<<l. The most extended opinion
[8-10,12,13 is that interfaces withy>1 are not properly
fractal objects and self-affinity is not a sure feature. But self-
affinity for interfaces in whichy<1 is a simple hypothesis log t
that, as we will show, in our models is only valid for
x=1/2 or 1. This can be readily verified in a kind of growth  FIG. 2. Square local width vs time for the random diffusion
model in whichy takes a continuous range of values con-model, Eq.(6), averaged over a length scale 5 (squarey | =10
trolled by the intensity of disorder in the diffusion coeffi- (triangles, andl =150 (crossesfor different degrees of disorder. A
cient. This model can be used to describe a fluid interfaceystem size.=1000 and 15 realizations of disorder were used. As
advancing through stratified porous materidlS] with long  in Fig. 1, the continuous line slopes correspond to the values of
range correlations in the growth direction. The growth modeR S obtained in simulation. The dashed line is the adjusted curve of

log,, o° (1,t)

that we study here is given by the data fol =5. A comparison with our scaling theory is given in
Table I.
Jh(x,t) o 17
i o DX o h( )+ 7(x,0). 6)  g=1/2(2—a) and y=1/2(1-@). Note that, as we have

mentioned above, a continuous range of roughness expo-

D(x)>0 is the columnar diffusivity coefficient that controls Nents (from y=1/2 to x=) are obtained by varying the
the interconnectivity between neighbor channels. This equdPtensity of disorder. _ .
tion can be viewed like Eq3) for m=1 but with a quenched The h¢|ght difference .CO(reIatlon_ function can be qalcu—
random diffusion term. A similar model was recently studied'ated[15] in the asymptotic time regime from E¢6) and is
in Ref. [15]. given by
It is known[15] that Eq.(6) can be considered as a model . L .
_of diffusing part|cle_s_W|th tlr_ne-dep_endent sources and sinks G(lyt)NtZ,Bf duj dvf dsf dsr
in such a way that it is possible, using the well-known theory —w 0 0
of transport through random media, to take the usual stochas- .
tic description forD(x). So,D(x) is taken to be an uncor- e”

related random field and distributed according to a probabil- ><(s—sr —D(s—sr)u?)(sr —D(sr)u?)
ity density P(D)=N,D ™ *f.(D/Dyay, Where N, is a T
normalization constant anfg a cutoff function. The param- X(1—e ") Agua(u), (7)

eter « characterizes the intensity of disorder. Disorder is

called weakfor a=0. Strongdisorder occurs for @a<1  whereD(s)~s*?" 9 is the Laplace transform of the time-
because of the divergence B{D) at origin. The model so dependent diffusion coefficient. Since E&) has the same
formulated is easy to simulate numerically and allows anaanalytical behavior as Eq3) for m=1 [with an equivalent
lytical treatment. As has been shoWh5], the inhomoge- time-dependent diffusion coefficiel(t)] it is easy to see
neous problen(6) is statistically equivalent to a homoge- that the scaling of5(l,t), Eq.(7), for small scale$<t'? is
neous one with a time-dependent diffusion coefficient giveralso given by Eq.5) with n=1 (with the corresponding
by the so-called effective medium approximation conditiona-dependent exponents

[15]. With the above-define®(D) the equivalent diffusion For small length scale$<t?<L, from Eq.(5) we have
length scales as,(t)~t(~«/(2~9) and consequently the dy- that the square local widtB(l,t) crosses over to a different
namical exponert will be given byz=(2—a)/(1—a). The  temporal regimes(l,t>1%)~t2#«| where the time exponent
exponents8 and y can be easily calculated, obtaining is B, = 8—1/2z= a/2(2— «). Thus, the interface would be
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TABLE I. Scaling exponents for the model with random diffusion, E6), for several degrees of
disorder. Theoretical values @, x, andg, are given in the text. The effective roughness exponent is always
lower than the local roughnegs,.= 1/2. Note thaly,,. remains roughly constant despite the great difference

existing iny

B B X Xeff By By
a (exac) (simulation (exac) (simulation (theory (simulation
2/3 3/8 0.380.05 3/2 0.35%0.05 1/4 0.27%0.03
1/2 1/3 0.34-0.01 1 0.3%0.04 1/6 0.1&0.03
1/3 3/10 0.31#+0.02 3/4 0.450.05 1/10 0.120.04

self-affine only in the case of weak disorde=0 (i.e., the  occur even in growth processes in whighk1. In our mod-
EW equation. For 0<a<1, the interface is not a self-affine els the failure of the Family-Vicsek scaling, except for
object and an anomalous scaling occurs. In Fig. 2 our nugrowth with y=n/2 (wheren=1, 2), indicates that the in-
merical results for the local width versus time are presentederface is not self-affine. In addition, we have seen that a new
for three degrees of disorder. We can see that the exponefiine exponentg, = —n/2z (wheren=1,2 depending on
B, predicted by our scaling is in very good agreement withthe mode) has to be introduced in order to get a complete
simulation for alle (see Table)l description of the scaling behavior of the interface. More-
In true saturation, at very long timelssL <t'?, the scal- ~ OVer, the roughness exponeyys;, commonly obtained in a
ing behavior ofG(l,t) can be obtained from Eq5) for number of simulationsand experimenjsis an effectlye ex-
n=1 and we haves(l,t—=)~IL%"1, So, in the case of ponent affected by a crossover from the local scaling expo-

strong disorder a local roughnegs,.= 1/2 is obtained. Cer- N€NtXioc t0 the global roughness exponentThis effective

tainly, as we can see in Table I, the crossover to the gIobaﬂoughness exponent does not give any information ab_out the
roughnessy=1/2(2— a)]>1/2 for larger scales yields lower Yalue of the scaling exponents 5, andz; however,xefr is
numerical values of the local roughness exponent. In alfmportant from a physical point of view to obtain thg e.ffec.-
cases, including those with<1, the interface is not self- tive roughness measured in experiments and to distinguish

affine as we claimed above. From our models it is clear thaTthe corresponding universality class.

the standard exponengs 8, andz cannot characterize com- b Althobligh tkée fnew ?ﬁallntg glctufre, ptr'optlnsed n dEP’ has b
pletely the scaling behavior of a growing interface. For in- een obtained from the study ol particuiar mocels, we be-

stance, note that the linear MBE model, E8) for m=2 lieve that it can be applied to more general growth processes.
leads té) the same critical exponegtsy, ané:iz, as the modél The scaling(5) s baseq on the property of the scaling fu_nc_-
with random diffusion, Eq(6), in the case of a disorder tion, g, of being analytical at small length scales and this is
parametein=2/3; howéver bo,th models have a very differ- expected to be verified for a broad class of growth problems.

ent local roughness exponent in such a way that they belon he existence of kinetic roughenmg satisfying Eﬁ)_ but .
to distinct universality classes. |_th values ofn# 1,2 must be |nve§tlgated_ further_smce, in
In conclusion, we have studied the problem of anomalou§hIS CaS€Xioc W(.)UId be a new apd.mterestmg scaling expo-
kinetic roughening by means of a variety of growth models"€"t- Investigation of this point is in progress.
that allowed us an analytical treatment. Analytical results
have been compared with simulations focusing our interest
on the scaling of the local width at small length scales, This work has been supported by DGICyT of the Spanish
I <L. We have shown rigorously that anomalous scaling mayGovernment, Project No. PB93—0054—-C02-02.
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